Question 524726
Find the EXACT solutions of the equation sin(x)+2cos^2(x)=1 that are in the interval [0, 2π)
**
sin(x)+2cos^2(x)=1
sin(x)+2(1-sin^2(x)=1
sin(x)+2-2sin^2(x)=1
2sin^2(x)-sin(x)-1=0
(2sin(x)+1)(sin(x)-1)=0
(2sin(x)+1)=0
2sin(x)=-1
sin(x)=-1/2
x=7&#960;/6 and 11&#960;/6 (in quadrants III and IV where sin<0)
or
sin(x)-1=0
sin(x)=1
x=&#960;/2
ans:
Solutions: 7&#960;/6, 11&#960;/6, and &#960;/2