Question 514007
<font face="Times New Roman" size="+2">


I just did this one, but here it is again.


The measure of an interior angle in a regular *[tex \Large n]-gon is given by *[tex \Large \frac{(n\ -\ 2)180}{n}].  The measure of the exterior angle of a regular *[tex \Large n]-gon is given by *[tex \Large \frac{360}{n}].  We are given that the difference is 140 degrees, so:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \frac{(n\ -\ 2)180}{n}\ -\ \frac{360}{n}\ =\ 140]


Solve for *[tex \Large n].


John
*[tex \LARGE e^{i\pi} + 1 = 0]
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>