Question 511604
A model for a company's revenue is {{{R = -15p^2 + 300p + 12000}}} where p is the price in dollars of the company's products. 
.
What price will maximize revenue?
at vertex where:
p = -b/(2a)
p = -300/(2(-15))
p = -300/(-30)
p = $10
.
Find the maximum revenue.
substitute above into:
{{{R = -15p^2 + 300p + 12000}}}
{{{R = -15(10)^2 + 300(10) + 12000}}}
{{{R = -15(100) + 3000 + 12000}}}
{{{R = -1500 + 3000 + 12000}}}
{{{R = 13500}}}
.