Question 509847
The question is Triangle ABC has vertices A(0,8), B (6,0), C(15,0) 

d(AB) =Distance between two points													
			
d= 	{{{sqrt((y2-y1)^2+(x2-x1)^2)}}}				
x1	y1	x2	y2													
0	8	6	0										
d= 	{{{sqrt((0-8)^2	+(6-0)^2)}}}
d= 	{{{sqrt((-8)^2	+(6)^2	)}}}				
d= 	{{{sqrt((100)  	)}}}								
dAB)= 	10

d(BC)=	Distance between two points													
x1	y1	x2	y2										
d= 	{{{sqrt((y2-y1)^2+(x2-x1)^2)}}}												
6	0	15	0										
d= 	{{{sqrt((		0	-	0	)^2	+	(	15	-	6	)^2	)}}}
d= 	{{{sqrt((		0	)^2	+	(	9	)^2	)}}}				
d= 	{{{sqrt((		81	)  	)}}}								
d(BC)= 	9											
d(CA)=Distance between two points													
x1	y1	x2	y2										
d= 	{{{sqrt((y2-y1)^2+(x2-x1)^2)}}}												
15	0	0	8										
d= 	{{{sqrt((		8	-	0	)^2	+	(	0	-	15	)^2	)}}}
d= 	{{{sqrt((		8	)^2	+	(	-15	)^2	)}}}				
d= 	{{{sqrt((		289	)  	)}}}								
d= 	17

AB=10 , BC = 9, AC=17

Use Heron's formula to calculate the area																
HERON”S FORMULA																
																
Area of Triangle = 		{{{sqrt(s*(s-a)(s-b)(s-c))}}}														
where s = half the perimeter				a,b,c are the sides of the triangle												
A =	10	b=	9	c=	17											
																
S=	{{{(a+b+c)/2}}}				S=	18										
																
Area ={{{sqrt(	18	*	( 	18	-	10	)(	18	-	9	)(	18	-	17	))}}}	
Area ={{{sqrt(	18	*	( 	8	)(	9	)(	1	))}}}							
																
Area ={{{sqrt(	1296	)}}}														
Area =	36 sq. units	
m.ananth@hotmail.ca