Question 509335
<pre><font size = 5><b>

The other tutor's answer is incorrect.

I have colored all the ones red that 
either have a sum of 8 or that have 
at least one 6.

&#9856;&#9856;   &#9856;&#9857;   &#9856;&#9858;   &#9856;&#9859;   &#9856;&#9860;  <font color="red">&#9856;&#9861;</font>

&#9857;&#9856;   &#9857;&#9857;   &#9857;&#9858;   &#9857;&#9859;   &#9857;&#9860;  <font color="red">&#9857;&#9861;</font>

&#9858;&#9856;   &#9858;&#9857;   &#9858;&#9858;   &#9858;&#9859;   <font color="red">&#9858;&#9860;</font>  <font color="red">&#9858;&#9861;</font>

&#9859;&#9856;   &#9859;&#9857;   &#9859;&#9858;   <font color="red">&#9859;&#9859;</font>   &#9859;&#9860;  <font color="red">&#9859;&#9861;</font>

&#9860;&#9856;   &#9860;&#9857;   <font color="red">&#9860;&#9858;</font>   &#9860;&#9859;   &#9860;&#9860;  <font color="red">&#9860;&#9861;</font>

<font color="red">&#9861;&#9856;   &#9861;&#9857;   &#9861;&#9858;   &#9861;&#9859;   &#9861;&#9860;  &#9861;&#9861;</font>

Count the red ones.  There are 14 of them.  
Count all the rolls. There are 36 of them.  
So the probability is 14 out of 36 or 
{{{14/36}}} which reduces to {{{7/18}}}.

Edwin</pre>