Question 508737
Simplify:
{{{6/(9+i)}}} Rationalize the denominator by multiplying top and bottom by {{{(9-i)}}}, called the complex conjugate of {{{(9+i)}}}
{{{6(9-i)/((9+i)(9-i)) = (54-6i)/(81-i^2)}}} Replace {{{i^2 = -1}}}
{{{(54-6i)/(81-(-1)) = (54-6i)/(82)}}}={{{2(27-3i)/(2(41))}}} Cancel the 2's
{{{highlight((27-3i)/41)}}}