Question 507702
# 6




Looking at the expression {{{36a^2-84ab+49b^2}}}, we can see that the first coefficient is {{{36}}}, the second coefficient is {{{-84}}}, and the last coefficient is {{{49}}}.



Now multiply the first coefficient {{{36}}} by the last coefficient {{{49}}} to get {{{(36)(49)=1764}}}.



Now the question is: what two whole numbers multiply to {{{1764}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-84}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{1764}}} (the previous product).



Factors of {{{1764}}}:

1,2,3,4,6,7,9,12,14,18,21,28,36,42,49,63,84,98,126,147,196,252,294,441,588,882,1764

-1,-2,-3,-4,-6,-7,-9,-12,-14,-18,-21,-28,-36,-42,-49,-63,-84,-98,-126,-147,-196,-252,-294,-441,-588,-882,-1764



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{1764}}}.

1*1764 = 1764
2*882 = 1764
3*588 = 1764
4*441 = 1764
6*294 = 1764
7*252 = 1764
9*196 = 1764
12*147 = 1764
14*126 = 1764
18*98 = 1764
21*84 = 1764
28*63 = 1764
36*49 = 1764
42*42 = 1764
(-1)*(-1764) = 1764
(-2)*(-882) = 1764
(-3)*(-588) = 1764
(-4)*(-441) = 1764
(-6)*(-294) = 1764
(-7)*(-252) = 1764
(-9)*(-196) = 1764
(-12)*(-147) = 1764
(-14)*(-126) = 1764
(-18)*(-98) = 1764
(-21)*(-84) = 1764
(-28)*(-63) = 1764
(-36)*(-49) = 1764
(-42)*(-42) = 1764


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-84}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>1764</font></td><td  align="center"><font color=black>1+1764=1765</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>882</font></td><td  align="center"><font color=black>2+882=884</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>588</font></td><td  align="center"><font color=black>3+588=591</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>441</font></td><td  align="center"><font color=black>4+441=445</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>294</font></td><td  align="center"><font color=black>6+294=300</font></td></tr><tr><td  align="center"><font color=black>7</font></td><td  align="center"><font color=black>252</font></td><td  align="center"><font color=black>7+252=259</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>196</font></td><td  align="center"><font color=black>9+196=205</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>147</font></td><td  align="center"><font color=black>12+147=159</font></td></tr><tr><td  align="center"><font color=black>14</font></td><td  align="center"><font color=black>126</font></td><td  align="center"><font color=black>14+126=140</font></td></tr><tr><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>98</font></td><td  align="center"><font color=black>18+98=116</font></td></tr><tr><td  align="center"><font color=black>21</font></td><td  align="center"><font color=black>84</font></td><td  align="center"><font color=black>21+84=105</font></td></tr><tr><td  align="center"><font color=black>28</font></td><td  align="center"><font color=black>63</font></td><td  align="center"><font color=black>28+63=91</font></td></tr><tr><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>49</font></td><td  align="center"><font color=black>36+49=85</font></td></tr><tr><td  align="center"><font color=black>42</font></td><td  align="center"><font color=black>42</font></td><td  align="center"><font color=black>42+42=84</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-1764</font></td><td  align="center"><font color=black>-1+(-1764)=-1765</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-882</font></td><td  align="center"><font color=black>-2+(-882)=-884</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-588</font></td><td  align="center"><font color=black>-3+(-588)=-591</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-441</font></td><td  align="center"><font color=black>-4+(-441)=-445</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-294</font></td><td  align="center"><font color=black>-6+(-294)=-300</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>-252</font></td><td  align="center"><font color=black>-7+(-252)=-259</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-196</font></td><td  align="center"><font color=black>-9+(-196)=-205</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-147</font></td><td  align="center"><font color=black>-12+(-147)=-159</font></td></tr><tr><td  align="center"><font color=black>-14</font></td><td  align="center"><font color=black>-126</font></td><td  align="center"><font color=black>-14+(-126)=-140</font></td></tr><tr><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-98</font></td><td  align="center"><font color=black>-18+(-98)=-116</font></td></tr><tr><td  align="center"><font color=black>-21</font></td><td  align="center"><font color=black>-84</font></td><td  align="center"><font color=black>-21+(-84)=-105</font></td></tr><tr><td  align="center"><font color=black>-28</font></td><td  align="center"><font color=black>-63</font></td><td  align="center"><font color=black>-28+(-63)=-91</font></td></tr><tr><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>-49</font></td><td  align="center"><font color=black>-36+(-49)=-85</font></td></tr><tr><td  align="center"><font color=red>-42</font></td><td  align="center"><font color=red>-42</font></td><td  align="center"><font color=red>-42+(-42)=-84</font></td></tr></table>



From the table, we can see that the two numbers {{{-42}}} and {{{-42}}} add to {{{-84}}} (the middle coefficient).



So the two numbers {{{-42}}} and {{{-42}}} both multiply to {{{1764}}} <font size=4><b>and</b></font> add to {{{-84}}}



Now replace the middle term {{{-84ab}}} with {{{-42ab-42ab}}}. Remember, {{{-42}}} and {{{-42}}} add to {{{-84}}}. So this shows us that {{{-42ab-42ab=-84ab}}}.



{{{36a^2+highlight(-42ab-42ab)+49b^2}}} Replace the second term {{{-84ab}}} with {{{-42ab-42ab}}}.



{{{(36a^2-42ab)+(-42ab+49b^2)}}} Group the terms into two pairs.



{{{6a(6a-7b)+(-42ab+49b^2)}}} Factor out the GCF {{{6a}}} from the first group.



{{{6a(6a-7b)-7b(6a-7b)}}} Factor out {{{-7b}}} from the second group.



{{{(6a-7b)(6a-7b)}}} Factor out the GCF {{{6a-7b}}}



{{{(6a-7b)^2}}} Condense the terms.



So {{{36a^2-84ab+49b^2}}} completely factors to {{{(6a-7b)^2}}}



In other words, {{{36a^2-84ab+49b^2=(6a-7b)^2}}}

=======================================================

# 7



{{{9y^2-16z^2}}} Start with the given expression.



{{{(3y)^2-16z^2}}} Rewrite {{{9y^2}}} as {{{(3y)^2}}}.



{{{(3y)^2-(4z)^2}}} Rewrite {{{16z^2}}} as {{{(4z)^2}}}.



Notice how we have a difference of squares {{{A^2-B^2}}} where in this case {{{A=3y}}} and {{{B=4z}}}.



So let's use the difference of squares formula {{{A^2-B^2=(A+B)(A-B)}}} to factor the expression:



{{{A^2-B^2=(A+B)(A-B)}}} Start with the difference of squares formula.



{{{(3y)^2-(4z)^2=(3y+4z)(3y-4z)}}} Plug in {{{A=3y}}} and {{{B=4z}}}.



So this shows us that {{{9y^2-16z^2}}} factors to {{{(3y+4z)(3y-4z)}}}.



In other words {{{9y^2-16z^2=(3y+4z)(3y-4z)}}}.



Let me know if you need more help or if you need me to explain a step in more detail.
Feel free to email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>
or you can visit my website here: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a>


Thanks,


Jim