Question 50864
{{{ 3x^2 - 6x + 1 = 0 }}}
This can not be factored ... use the quadratic formula.
{{{x = (-b +- sqrt( b^2-4*a*c ))/(2*a) }}}
Plug in the values for a, b, and c 
{{{x = (-(-6) +- sqrt( (-6)^2-4*(3)*(1) ))/(2*(3)) }}}
Solving step by step .... -(-6) = 6
{{{x = (6 +- sqrt( (-6)^2-4*(3)*(1) ))/(2*(3)) }}}
.... (-6)^2= 36
{{{x = (6 +- sqrt( 36-4*(3)*(1) ))/(2*(3)) }}}
.... 4 * 3 = 12
{{{x = (6 +- sqrt( 36-12*(1) ))/(2*(3)) }}}
.... 12 * 1 = 12
{{{x = (6 +- sqrt( 36-12 ))/(2*(3)) }}}
... 36 - 12 = 24
{{{x = (6 +- sqrt( 24 ))/(2*(3)) }}}
.... 2 * 3 = 6
{{{x = (6 +- sqrt( 24 ))/(6) }}}
.... sqrt24 = 2sqrt6
{{{x = (6 +- 2sqrt( 6 ))/(6) }}}
Reduce the fraction
{{{x = (3 +- sqrt( 6 ))/(3) }}}