Question 496641
Let {{{c}}} = Chris's wage
Let {{{v}}} = Vesna's wage
Let {{{d}}} = Dawn's wage
given:
(1) {{{ c = 4v }}}
(2) {{{ v = d + 17 }}}
(3) {{{ c + v + d = 163 }}}
---------------------
This is 3 equations  with 3 unknowns, 
so it's solvable
(2) {{{v = d + 17 }}}
(2) {{{d = v - 17 }}}
Substitute (1) and (2) into (3)
(3) {{{ 4v + v + v - 17 = 163 }}}
(3) {{{ 6v = 163 + 17 }}}
(3) {{{ 6v = 180 }}}
(3) {{{ v = 30 }}}
and, from (1),
(1) {{{ c = 4*30 }}}
(1) {{{ c = 120 }}}
Chris earns $120
--------------
check answer:
(2) {{{ d = v - 17 }}}
(2) {{{ d = 30 - 17 }}}
(2) {{{ d = 13 }}}
and
(3) {{{ c + v + d = 163 }}}
(3) {{{ 120 + 30 + 13 = 163 }}}
(3) {{{ 163 = 163 }}}
OK