Question 495891


{{{sqrt(27)+sqrt(75)+sqrt(12)}}} Start with the given expression



{{{3*sqrt(3)+sqrt(75)+sqrt(12)}}} Simplify {{{sqrt(27)}}} to get {{{3*sqrt(3)}}}. Note: If you need help with simplifying square roots, check out this <a href=http://www.algebra.com/algebra/homework/Radicals/simplifying-square-roots.solver> solver</a>.



{{{3*sqrt(3)+5*sqrt(3)+sqrt(12)}}} Simplify {{{sqrt(75)}}} to get {{{5*sqrt(3)}}}.



{{{3*sqrt(3)+5*sqrt(3)+2*sqrt(3)}}} Simplify {{{sqrt(12)}}} to get {{{2*sqrt(3)}}}.



Since we have the common term {{{sqrt(3)}}}, we can combine like terms



{{{(3+5+2)sqrt(3)}}} Factor out the GCF {{{sqrt(3)}}}



{{{10*sqrt(3)}}} Combine like terms.



So {{{sqrt(27)+sqrt(75)+sqrt(12)}}} simplifies to {{{10*sqrt(3)}}}.



In other words,  {{{sqrt(27)+sqrt(75)+sqrt(12)=10*sqrt(3)}}}