Question 50472
<font size = 5><b><pre><font color = "darkmagenta">The first seven cannot be factored, but the last
three can be:

===============================================

8)4x to the power of four + y to the power of four

4x<sup>4</sup> + y<sup>4</sup>

Add and subtract 4x<sup>2</sup>y<sup>2</sup>

4x<sup>4</sup> + 4x<sup>2</sup>y<sup>2</sup> + y<sup>4</sup> - 4x<sup>2</sup>y<sup>2</sup>

The first three terms can be factored as a perfect square, and
the last term is itself a perfect square.

(2x<sup>2</sup> + y<sup>2</sup>)<sup>2</sup> - (2xy)<sup>2</sup>

This is the difference of two perfect squares:

[(2x<sup>2</sup> + y<sup>2</sup>) - 2xy][(2x<sup>2</sup> + y<sup>2</sup>) + 2xy]

Get rid of unnecessary grouping symbols:

(2x<sup>2</sup> + y<sup>2</sup> - 2xy)(2x<sup>2</sup> + y<sup>2</sup> + 2xy)

Arrange in descending powers of x and ascending
powers of y

(2x<sup>2</sup> - 2xy + y<sup>2</sup>)(2x<sup>2</sup> + 2xy + y<sup>2</sup>)

===============================================

9)16x to the power of four z + 4z to the power of five

16x<sup>4</sup>z + 4z

Factor out GCF 4z

4z{4x<sup>4</sup> + 1}

Add and subtract 4x2 in the braces

4z{4x<sup>4</sup> + 4x<sup>2</sup> + 1 - 4x<sup>2</sup>}

The first three terms in braces can be factored as a
perfect square, and the last term is itself a perfect 
square.

4z{(2x<sup>2</sup> + 1)<sup>2</sup> - (2x)<sup>2</sup>}

The expression in braces is the difference of two 
perfect squares

4z{[(2x<sup>2</sup> + 1) - (2x)][(2x<sup>2</sup> + 1) + (2x)]

Get rid of unnecessary grouping symbols

4z(2x<sup>2</sup> + 1 - 2x)(2x<sup>2</sup> + 1 + 2x)

Arrange the expressions in parentheses in descending
order of x

4z(2x<sup>2</sup> - 2x + 1)(2x<sup>2</sup> + 2x + 1)

===============================================

10)10xz to the power of four + 40x

10xz<sup>4</sup> + 40x

Factor out GCF 10x

10x{z<sup>4</sup> + 4}

Add and subtract 4z<sup>2</sup> in the braces

10x{z<sup>4</sup> + 4z<sup>2</sup> + 4 - 4z<sup>2</sup>}

The first three terms in braces can be factored as a
perfect square, and the last term is itself a perfect 
square.

10x{(z<sup>2</sup> + 2)<sup>2</sup> - (2z)<sup>2</sup>}

The expression in braces is the difference of two 
perfect squares

10x{[(z<sup>2</sup> + 2) - (2z)][(z<sup>2</sup> + 2) + (2z)]

Get rid of unnecessary grouping symbols

10x(z<sup>2</sup> + 2 - 2z)(z<sup>2</sup> + 2 + 2z)

Arrange the expressions in parentheses in descending
order of z

10x(z<sup>2</sup> - 2z + 2)(z<sup>2</sup> + 2z + 2)

Edwin</pre></font></b>