Question 490667


{{{36x^2-24xy+4y^2}}} Start with the given expression.



{{{4(9x^2-6xy+y^2)}}} Factor out the GCF {{{4}}}.



Now let's try to factor the inner expression {{{9x^2-6xy+y^2}}}



---------------------------------------------------------------



Looking at the expression {{{9x^2-6xy+y^2}}}, we can see that the first coefficient is {{{9}}}, the second coefficient is {{{-6}}}, and the last coefficient is {{{1}}}.



Now multiply the first coefficient {{{9}}} by the last coefficient {{{1}}} to get {{{(9)(1)=9}}}.



Now the question is: what two whole numbers multiply to {{{9}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-6}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{9}}} (the previous product).



Factors of {{{9}}}:

1,3,9

-1,-3,-9



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{9}}}.

1*9 = 9
3*3 = 9
(-1)*(-9) = 9
(-3)*(-3) = 9


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-6}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>1+9=10</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>3+3=6</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-1+(-9)=-10</font></td></tr><tr><td  align="center"><font color=red>-3</font></td><td  align="center"><font color=red>-3</font></td><td  align="center"><font color=red>-3+(-3)=-6</font></td></tr></table>



From the table, we can see that the two numbers {{{-3}}} and {{{-3}}} add to {{{-6}}} (the middle coefficient).



So the two numbers {{{-3}}} and {{{-3}}} both multiply to {{{9}}} <font size=4><b>and</b></font> add to {{{-6}}}



Now replace the middle term {{{-6xy}}} with {{{-3xy-3xy}}}. Remember, {{{-3}}} and {{{-3}}} add to {{{-6}}}. So this shows us that {{{-3xy-3xy=-6xy}}}.



{{{9x^2+highlight(-3xy-3xy)+y^2}}} Replace the second term {{{-6xy}}} with {{{-3xy-3xy}}}.



{{{(9x^2-3xy)+(-3xy+y^2)}}} Group the terms into two pairs.



{{{3x(3x-y)+(-3xy+y^2)}}} Factor out the GCF {{{3x}}} from the first group.



{{{3x(3x-y)-y(3x-y)}}} Factor out {{{-y}}} from the second group.



{{{(3x-y)(3x-y)}}} Factor out {{{3x-y}}}



{{{(3x-y)^2}}} Condense




So {{{9x^2-6xy+y^2}}} factors to {{{(3x-y)^2}}}



This then means that {{{4(9x^2-6xy+y^2)}}}  becomes {{{4(3x-y)^2}}} 



So the final answer is {{{4(3x-y)^2}}}