Question 490229

you can do this : {{{0=-5x^2-14x-8}}} and than use quadratic formula to solve for {{{x}}}

since you dealing with negative signs in this case, I suggest you do it this way: move both terms from the right to the left side

{{{5x^2=-14x-8}}}


{{{5x^2+14x+8=0}}}....now use quadratic formula to solve for {{{x}}}


{{{x = (-b +- sqrt( b^2-4*a*c ))/(2*a) }}}...note {{{a=5}}}, {{{b=14}}} and {{{c=8}}}


{{{x = (-14 +- sqrt( 14^2-4*5*8 ))/(2*5) }}}


{{{x = (-14 +- sqrt( 196-160 ))/10 }}}


{{{x = (-14 +- sqrt( 36 ))/10 }}}


{{{x = (-14 +- 6)/10 }}}


solutions:

{{{x = (-14 + 6)/10 }}}


{{{x = -8/10 }}}


{{{x = -4/5 }}}


or

{{{x = (-14 - 6)/10 }}}


{{{x = -20/10 }}}


{{{x = -2 }}}


let's  check it on a graph:

{{{ graph( 500,500, -5, 5, -10, 10,5x^2+14x+8) }}}