Question 489975
{{{4/xy+16/xz+20/yz=12}}} solve for {{{y}}}


{{{4/xy+20/yz=12-16/xz}}}....common denominator for {{{xy}}} and {{{yz}}} is {{{xyz}}}


{{{4z/xyz+20x/xyz=12-16/xz}}}


{{{(4z+20x)/xyz=12-16/xz}}}


{{{4z+20x=(12-16/xz)xyz}}}

{{{4z+20x=12xyz-(16/xz)xyz}}}

{{{4z+20x=12xyz-(16/cross(xz))cross(x)y*cross(z)}}}


{{{4z+20x=12xyz-16y}}}


{{{4(z+5x)=y(12xz-16)}}}


{{{(4(z+5x))/(12xz-16)=y}}}


{{{(4(z+5x))/4(3xz-4)=y}}}


{{{(cross(4)(z+5x))/cross(4)(3xz-4)=y}}}


{{{(z+5x)/(3xz-4)=y}}}