Question 49903
a.)
{{{sqrt(2x - 1) = x - 2}}}
{{{2x - 1 = (x - 2)^2}}}
{{{2x - 1 = x^2 - 4x + 4}}}
{{{0 = x^2 - 6x + 5}}}
{{{0 = (x - 5)(x - 1)}}}
x = 5 and x = 1
Check:
sqrt(2x - 1) = x - 2
sqrt(10 - 1) = 5 - 2
sqrt(9) = 3 Correct
Check:
sqrt(2x - 1) = x - 2
sqrt(1) = -1 Not Correct
Only Answer: five
{{{graph(300,300,-4,6,-5,5,sqrt(2x - 1),x - 2)}}}
b.)
{{{sqrt(3x) + 5 = 11}}}
{{{sqrt(3x) = 6}}}
{{{3x = 36}}}
{{{x = 12}}}
Check:
sqrt(3x) + 5 = 11
sqrt(36) = 6 Correct
{{{graph(300,300,-1,13,-3,7,sqrt(3x),6)}}}