Question 482125
I'll do the first one to get you started





{{{(x-4)(x+3)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(x)-4)(highlight(x)+3)}}} Multiply the <font color="red">F</font>irst terms:{{{(x)*(x)=x^2}}}.



{{{(highlight(x)-4)(x+highlight(3))}}} Multiply the <font color="red">O</font>uter terms:{{{(x)*(3)=3*x}}}.



{{{(x+highlight(-4))(highlight(x)+3)}}} Multiply the <font color="red">I</font>nner terms:{{{(-4)*(x)=-4*x}}}.



{{{(x+highlight(-4))(x+highlight(3))}}} Multiply the <font color="red">L</font>ast terms:{{{(-4)*(3)=-12}}}.



---------------------------------------------------

So we have the terms: {{{x^2}}}, {{{3*x}}}, {{{-4*x}}}, {{{-12}}} 



{{{x^2+3*x-4*x-12}}} Now add every term listed above to make a single expression.



{{{x^2-x-12}}} Now combine like terms.



So {{{(x-4)(x+3)}}} FOILs to {{{x^2-x-12}}}.



In other words, {{{(x-4)(x+3)=x^2-x-12}}}.