Question 481210


{{{(c+g)(c^2-cg+g^2)}}} Start with the given expression.



{{{c(c^2-cg+g^2)+g(c^2-cg+g^2)}}} Expand.



{{{(c)*(c^2)+(c)*(-cg)+(c)*(g^2)+(g)*(c^2)+(g)*(-cg)+(g)*(g^2)}}} Distribute.



{{{c^3-c^2*g+cg^2+c^2*g-cg^2+g^3}}} Multiply.



{{{c^3+g^3}}} Now combine like terms.



 So {{{(c+g)(c^2-cg+g^2)}}} expands to {{{c^3+g^3}}}.



In other words, {{{(c+g)(c^2-cg+g^2)=c^3+g^3}}}.