Question 477736
find the real factor of the following: x^n+1 (where n is an odd integer)
<pre>

{{{x^3+1 = (x-1)(x^2-x+1)}}}

{{{x^5+1 = (x-1)(x^4-x^3+x^2+1)}}}

{{{x^7+1 = (x-1)(x^6-x^5+x^4-x^3+x^2-x+1)}}}

{{{x^9+1 = (x-1)(x^8-x^7+x^6-x^5+x^4-x^3+x^2-x+1)}}}

.................................

{{{x^n+1=(x+1)(x^(n-1)-x^(n-2)+x^(n-3)-x^(n-4)+"-..."+x^2-x+1)}}}

where n is an odd integer.

Edwin</pre>