Question 476851


{{{12x^2-34x+24}}} Start with the given expression.



{{{2(6x^2-17x+12)}}} Factor out the GCF {{{2}}}.



Now let's try to factor the inner expression {{{6x^2-17x+12}}}



---------------------------------------------------------------



Looking at the expression {{{6x^2-17x+12}}}, we can see that the first coefficient is {{{6}}}, the second coefficient is {{{-17}}}, and the last term is {{{12}}}.



Now multiply the first coefficient {{{6}}} by the last term {{{12}}} to get {{{(6)(12)=72}}}.



Now the question is: what two whole numbers multiply to {{{72}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-17}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{72}}} (the previous product).



Factors of {{{72}}}:

1,2,3,4,6,8,9,12,18,24,36,72

-1,-2,-3,-4,-6,-8,-9,-12,-18,-24,-36,-72



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{72}}}.

1*72 = 72
2*36 = 72
3*24 = 72
4*18 = 72
6*12 = 72
8*9 = 72
(-1)*(-72) = 72
(-2)*(-36) = 72
(-3)*(-24) = 72
(-4)*(-18) = 72
(-6)*(-12) = 72
(-8)*(-9) = 72


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-17}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>72</font></td><td  align="center"><font color=black>1+72=73</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>2+36=38</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>3+24=27</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>18</font></td><td  align="center"><font color=black>4+18=22</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>6+12=18</font></td></tr><tr><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>8+9=17</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-72</font></td><td  align="center"><font color=black>-1+(-72)=-73</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>-2+(-36)=-38</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>-3+(-24)=-27</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-4+(-18)=-22</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-6+(-12)=-18</font></td></tr><tr><td  align="center"><font color=red>-8</font></td><td  align="center"><font color=red>-9</font></td><td  align="center"><font color=red>-8+(-9)=-17</font></td></tr></table>



From the table, we can see that the two numbers {{{-8}}} and {{{-9}}} add to {{{-17}}} (the middle coefficient).



So the two numbers {{{-8}}} and {{{-9}}} both multiply to {{{72}}} <font size=4><b>and</b></font> add to {{{-17}}}



Now replace the middle term {{{-17x}}} with {{{-8x-9x}}}. Remember, {{{-8}}} and {{{-9}}} add to {{{-17}}}. So this shows us that {{{-8x-9x=-17x}}}.



{{{6x^2+highlight(-8x-9x)+12}}} Replace the second term {{{-17x}}} with {{{-8x-9x}}}.



{{{(6x^2-8x)+(-9x+12)}}} Group the terms into two pairs.



{{{2x(3x-4)+(-9x+12)}}} Factor out the GCF {{{2x}}} from the first group.



{{{2x(3x-4)-3(3x-4)}}} Factor out {{{3}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2x-3)(3x-4)}}} Combine like terms. Or factor out the common term {{{3x-4}}}



--------------------------------------------------



So {{{2(6x^2-17x+12)}}} then factors further to {{{2(2x-3)(3x-4)}}}



===============================================================



Answer:



So {{{12x^2-34x+24}}} completely factors to {{{2(2x-3)(3x-4)}}}.



In other words, {{{12x^2-34x+24=2(2x-3)(3x-4)}}}.



Note: you can check the answer by expanding {{{2(2x-3)(3x-4)}}} to get {{{12x^2-34x+24}}} or by graphing the original expression and the answer (the two graphs should be identical).