Question 475961
{{{(4i-3i^2-2)/(sqrt(-25)-sqrt(-3)sqrt(-3))}}}
You know that {{{i^2=-1}}}, {{{sqrt(-1)=i}}}
{{{(4i+3-2)/(i*sqrt(25)-i*sqrt(3)i*sqrt(3))}}}
{{{(4i+1)/(5i-3i^2)}}}
{{{(4i+1)/(5i+3)}}}
 multiply the numerator and the denominator by {{{(5i-3)}}}
{{{((4i+1)(5i-3))/((5i+3)(5i-3))=(20i^2-12i+5i-3)/(25i^2-9)=(-20-7i-3)/(-25-9)=(-23-7i)/-34=23/34+(7/34)i}}}