Question 49212
<pre><font size = 5><b>(2x-y)<sup>6</sup> 

Since the exponent is 6 there will be one 
more than 6 terms, or 7 terms.  They are:

C(6,6)(2x)<sup>6</sup>(-y)<sup>0</sup> +
C(6,5)(2x)<sup>5</sup>(-y)<sup>1</sup> + 
C(6,4)(2x)<sup>4</sup>(-y)<sup>2</sup> + 
C(6,3)(2x)<sup>3</sup>(-y)<sup>3</sup> +
C(6,2)(2x)<sup>2</sup>(-y)<sup>4</sup> + 
C(6,1)(2x)<sup>1</sup>(-y)<sup>5</sup> + 
C(6,0)(2x)<sup>0</sup>(-y)<sup>6</sup>  

Study the formation of the above 7 terms. 
Notice that each of the 7 terms is of this
form:

C(6,_)(2x)¯(-y)¯

The first two blanks are the same, they start 
with 6 and go down to 0 and the last blank 
starts at 0 and goes up to 6

I will assume you understand how to calculate
the binomial coefficients using this formula:

             n!
C(n,r) = ----------
          r!(n-r)!

where M! = M(M-1)(M-2)···3·2·1

If you don't understand that, post again.
Maybe your book uses <sub>n</sub>C<sub>r</sub>
instead but if so, it's the same as C(n,r)

C(6,6)(2x)<sup>6</sup>(-y)<sup>0</sup> =  1(2<sup>6</sup>x<sup>6</sup>)(-y)<sup>0</sup> = 1(64)x<sup>6</sup>(1) = 64x<sup>6</sup>
C(6,5)(2x)<sup>5</sup>(-y)<sup>1</sup> =  6(2<sup>5</sup>x<sup>5</sup>)(-y)<sup>1</sup> = 6(32)x<sup>5</sup>(-y) = -192x<sup>5</sup>y
C(6,4)(2x)<sup>4</sup>(-y)<sup>2</sup> = 15(2<sup>4</sup>x<sup>4</sup>)(-y)<sup>2</sup> = 15(16)x<sup>4</sup>y<sup>2</sup> = 240x<sup>4</sup>y<sup>2</sup> 
C(6,3)(2x)<sup>3</sup>(-y)<sup>3</sup> = 20(2<sup>3</sup>x<sup>3</sup>)(-y)<sup>3</sup> = 20(8)x<sup>3</sup>(-y<sup>3</sup>) = -160x<sup>3</sup>y<sup>3</sup>
C(6,2)(2x)<sup>2</sup>(-y)<sup>4</sup> = 15(2<sup>2</sup>x<sup>2</sup>)(-y)<sup>4</sup> = 15(4)x<sup>2</sup>y<sup>4</sup> = 60x<sup>2</sup>y<sup>4</sup> 
C(6,1)(2x)<sup>1</sup>(-y)<sup>5</sup> =  6(2<sup>1</sup>x<sup>1</sup>)(-y)<sup>5</sup> = 6(2)x<sup>1</sup>(-y<sup>5</sup>) = -12xy<sup>5</sup>
C(6,0)(2x)<sup>0</sup>(-y)<sup>6</sup> =  1(2<sup>0</sup>x<sup>0</sup>)(-y)<sup>6</sup> = 1(1)x<sup>0</sup>y<sup>6</sup> = 1(1)1y<sup>6</sup> = y<sup>6</sup>

Answer:

(2x - y)<sup>6</sup> = 
64x<sup>6</sup> - 192x<sup>5</sup>y + 240x<sup>4</sup>y<sup>2</sup> - 160x<sup>3</sup>y<sup>3</sup> + 60x<sup>2</sup>y<sup>4</sup> - 12xy<sup>5</sup> + y<sup>6</sup> 

Edwin</pre></font></b>