Question 474229
<pre>
A = k - p·ln(x)

Solve for ln(x)

add p·ln(x) to both sides:

p·ln(x) + A = k

Subtract A from both sides:

p·ln(x) = k - A

Divide both sides by p

        k - A 
ln(x) = —————
          p

Now you need to know this principle:  

The natural log equation {{{ln(M) = N}}} is equivalent to the 
exponential form,  {{{M = e^N}}}

So the above becomes:

 x = <font size = 4><sub>e</sub></font><sup><sup>{{{(k-A)/P}}}</sup></sup>

Edwin</pre>