Question 474230
<font face="Times New Roman" size="+2">


The log of the quotient is the difference of the logs:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \ln\left(\frac{x^2}{y}\right)\ =\ \ln\left(x^2\right)\ -\ \ln(y)]


The log of an argument raised to a power is the power times the log of the argument:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \ln\left(x^2\right)\ -\ \ln(y)\ =\  2\ln\left(x\right)\ -\ \ln(y)]


Substitute the given values and do the arithmetic.


John
*[tex \LARGE e^{i\pi} + 1 = 0]
My calculator said it, I believe it, that settles it
<div style="text-align:center"><a href="http://outcampaign.org/" target="_blank"><img src="http://cdn.cloudfiles.mosso.com/c116811/scarlet_A.png" border="0" alt="The Out Campaign: Scarlet Letter of Atheism" width="143" height="122" /></a></div>
</font>