Question 474084
{{{y = 6 + 4x - x^2}}} 
"turning point" is at the vertex, where the x coordinate is at:
x = -b/(2a)
x = -4/(2(-1))
x = -4/(-2)
x = 2
.
find y by plugging it into equation:
{{{y = 6 + 4x - x^2}}} 
{{{y = 6 + 4(2) - 2^2}}} 
{{{y = 6 + 8 - 4}}} 
{{{y = 10}}}
.
turning point is at (2,10)
Since the coefficient associated with the x^2 is negative, it is a parabola that opens downwards.
This means (2,10) is the peak.