Question 473308


Looking at the expression {{{25r^2+10r+1}}}, we can see that the first coefficient is {{{25}}}, the second coefficient is {{{10}}}, and the last term is {{{1}}}.



Now multiply the first coefficient {{{25}}} by the last term {{{1}}} to get {{{(25)(1)=25}}}.



Now the question is: what two whole numbers multiply to {{{25}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{10}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{25}}} (the previous product).



Factors of {{{25}}}:

1,5,25

-1,-5,-25



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{25}}}.

1*25 = 25
5*5 = 25
(-1)*(-25) = 25
(-5)*(-5) = 25


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{10}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>25</font></td><td  align="center"><font color=black>1+25=26</font></td></tr><tr><td  align="center"><font color=red>5</font></td><td  align="center"><font color=red>5</font></td><td  align="center"><font color=red>5+5=10</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-25</font></td><td  align="center"><font color=black>-1+(-25)=-26</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-5+(-5)=-10</font></td></tr></table>



From the table, we can see that the two numbers {{{5}}} and {{{5}}} add to {{{10}}} (the middle coefficient).



So the two numbers {{{5}}} and {{{5}}} both multiply to {{{25}}} <font size=4><b>and</b></font> add to {{{10}}}



Now replace the middle term {{{10r}}} with {{{5r+5r}}}. Remember, {{{5}}} and {{{5}}} add to {{{10}}}. So this shows us that {{{5r+5r=10r}}}.



{{{25r^2+highlight(5r+5r)+1}}} Replace the second term {{{10r}}} with {{{5r+5r}}}.



{{{(25r^2+5r)+(5r+1)}}} Group the terms into two pairs.



{{{5r(5r+1)+(5r+1)}}} Factor out the GCF {{{5r}}} from the first group.



{{{5r(5r+1)+1(5r+1)}}} Factor out {{{1}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(5r+1)(5r+1)}}} Combine like terms. Or factor out the common term {{{5r+1}}}



{{{(5r+1)^2}}} Condense the terms.



===============================================================



Answer:



So {{{25r^2+10r+1}}} factors to {{{(5r+1)^2}}}.



In other words, {{{25r^2+10r+1=(5r+1)^2}}}.



Note: you can check the answer by expanding {{{(5r+1)^2}}} to get {{{25r^2+10r+1}}} or by graphing the original expression and the answer (the two graphs should be identical).