Question 471134
  <pre><font face = "Tohoma" size = 4 color = "indigo"><b> 
Hi,
The site recommends posting no more than 1 Question per post.
Following all do relate to:
the vertex form of a parabola opening up or down, {{{y=a(x-h)^2 +k}}} 
where(h,k) is the vertex. a> 0 Vertex a minimum point.  a<0 Vertex a maximum Pt
3)  f(x)=-(x+2)^2-7   V(-2,-7) -1<0 Maximum Pt x = -2 Line of symmetry
7)  f(x)=1/3(x+2)^2+3 V(-2,3) 1/3>0 Minimum Pt x = -2 Line of symmetry

12) f(x)=-3(x+2)^2 V(-2,0) -3<0 Maximum Pt x = -2 Line of symmetry

13) f(x)=1/4 x^2  V(0,0) 1/4>0 Minimum Pt Pt x = 0(y-axis) Line of symmetry
following involve completing the Square
15) f(x)=x^2-8x-4 
    f(x) = 1*(x-4)^2 -20 V(4,-20) 1>0 Minimum Pt x = 4 Line of symmetry

17) f(x)=3x^2-6x+6
    f(x) = 3(x-1)^2 +3 V(1,3) 3>0 Maximum Pt x = 1 Line of symmetry

20) f(x)=2x^2+2x+10
    f(x)= 2(x+1/2)^2 + 9.5 V(-1/2,9.5) 2>0 Minimum Pt x = -1/2 Line of symmetry