Question 470992
  <pre><font face = "Tohoma" size = 4 color = "indigo"><b> 
Hi,
Standard Form of an Equation of an Hyperbola opening right or left is  {{{(x-h)^2/a^2 - (y-k)^2/b^2 = 1}}} 
where Pt(h,k) is a center  with vertices 'a' units right and left of center.
Asymptotes passing thru the center with slope = ± b/a 
foci being ± sqrt(a^2 + b^2)from center  along axis of symmetry y = k
<img src="http://upload.wikimedia.org/wikipedia/commons/thumb/9/97/Hyperbola_properties.svg/200px-Hyperbola_properties.svg.png">
 x^2/16 - y^2/25 = 1 C(0,0) Vertices: (4,0) and (-4,0)
Foci = (-6.4,0) and (6.4,0)  ± sqrt(41)= ± 6.4
Asymptotes  y = 5/4 and y = -5/4
 {{{drawing(300,300,-10,10,-10,10,  grid(1),
circle(-4, 0,0.3),
circle(4, 0,0.3),
circle(-6.4, 0,0.3),
circle(6.4, 0,0.3),

graph(300,300,-10,10,-10,10,0,(5/4)x,(-5/4)x, 5sqrt(((x)^2/16) -1),-5sqrt(((x)^2/16) -1)))}}}