Question 464642
<pre>
 x + 3y + 5z = 6
2x - 4y + 6z = 14
9x - 6y + 3z = 3

Sorry, the solution is (-1,-1,2)

{{{D=abs(matrix(3,3,

1,  3,  5, 
2, -4,  6, 
9, -6,  3))=288}}} 

{{{D[x]=abs(matrix(3,3,

red(6),  3,  5, 
red(14), -4,  6, 
red(3), -6,  3))=-288}}}

{{{D[y]=abs(matrix(3,3,

1,  red(6),  5, 
2, red(14),  6, 
9, red(3),  3))=-288}}}

{{{D[z]=abs(matrix(3,3,

1,  3,  red(6), 
2, -4,  red(14), 
9, -6,  red(3)))=576}}}

{{{x=D[x]/D = (-288)/288 = -1}}}

{{{y=D[y]/D = (-288)/288 = -1}}}

{{{z=D[x]/D = (576)/288 = 2}}}

So (x,y,z) = (-1,-1,2)

-------------------------

Checking:
{{{system(x + 3y + 5z = 6,
2x - 4y + 6z = 14,
9x - 6y + 3z = 3)}}}

becomes:

{{{system((-1) + 3(-1) + 5(2) = 6,
2(-1) - 4(-1) + 6(2) = 14,
9(-1) - 6(-1) + 3(2) = 3)}}}

{{{system(-1 - 3 + 10 = 6,
-2 + 4 + 12 = 14,
-9 + 6 + 6 = 3)}}}

{{{system(6 = 6,
14 = 14,
-3 = 3)}}}

Edwin</pre>