Question 459130
Let the wind speed = {{{w}}}
Let {{{a}}} = speed of the plane in still air
With the wind, the plane's speed is {{{ a + w }}}
Against the wind, the plane's speed is {{{ a - w }}}
You need 2 equations, 1 for going, 1 for returning
LA to Orlando:
(1) {{{ 2400 = ( a + w)*4.75 }}}
Orlando to LA:
(2) {{{ 2400 = ( a - w)*6 }}}
--------------------
Multiply both sides of (1) by {{{6}}}
and both sides of (2) by {{{4.75}}}
(1) {{{ 28.5a - 28.5w = 14400 }}}
(2) {{{ 28.5a + 28.5w = 11400 }}}
Add the equations
{{{ 57a = 25800 }}}
{{{ a = 452.6 }}} mi/hr
and
(2) {{{ 2400 = ( a - w)*6 }}}
(2) {{{ 2400 = (452.6 - w)*6 }}}
(2) {{{ 6w = 2715.6 - 2400 }}}
(2) {{{ 6w = 315.6 }}} 
(2) {{{ w = 52.6 }}} mi/hr
The wind speed is 52.6 mi/hr
The speed of the plane in still air is 452.6 mi/hr
check answers:
(1) {{{ 2400 = ( 452.6 + 52.6)*4.75 }}}
(1) {{{ 2400 = 505.2*4.75 }}}
(1) {{{ 2400 = 2399.7 }}}
close enough
(2) {{{ 2400 = ( 452.6 - 52.6)*6 }}}
(2) {{{ 2400 = 400*6 }}}
(2) {{{ 2400 = 2400 }}}
OK