Question 458820

A prime number (or a prime) is a natural number that has exactly two distinct natural number divisors: 1 and itself, 

and it {{{must}}} be a whole number {{{greater}}} than {{{1}}}.


The smallest twenty-five prime numbers (all the prime numbers under 100) are:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 


a.

{{{x^2+4x+3)))

{{{x = (-b +- sqrt( b^2-4*a*c ))/(2*a) }}} 

{{{x = (-4 +- sqrt(4^2-4*1*3 ))/(2*1) }}} 

{{{x = (-4 +- sqrt(16-12 ))/2 }}}

{{{x = (-4 +- sqrt(4 ))/2 }}}

{{{x = (-4 +- 2)/2 }}}

solutions:

{{{x = (-4 + 2)/2 }}}

{{{x = -2/2 }}}

{{{x = -1 }}}

or

{{{x = (-4 -2)/2 }}}

{{{x = -6/2 }}}

{{{x = -3 }}}


b.
{{{x^2+5x+6}}}

{{{x = (-b +- sqrt( b^2-4*a*c ))/(2*a) }}}

{{{x = (-5 +- sqrt( 5^2-4*1*6 ))/(2*1) }}}

{{{x = (-5 +- sqrt( 25-24 ))/2 }}}

{{{x = (-5 +- sqrt( 1 ))/2 }}}

{{{x = (-5 +- 1)/2 }}}


{{{x = (-5 + 1)/2 }}}

{{{x = -4/2 }}}

{{{x = -2 }}}

or

{{{x = (-5 - 1)/2 }}}

{{{x = -6/2 }}}

{{{x = -3 }}}



c.

{{{x^2+6+8}}}

{{{x^2+14=0}}}

{{{x^2=-14}}}

{{{x=sqrt(-14)}}}

{{{x=3.74*i}}}


so, the answer is: d.none of the above