Question 452676
Simply the following algebraic fraction
{{{(9x^2-1)/(12x^2-12x)}}}
----------------
{{{(9x^2+12x+3)/(3x^2-6x+3)}}}
invert the dividing fraction and multiply
{{{(9x^2-1)/(12x^2-12x)}}} * {{{(3x^2-6x+3)/(9x^2+12x+3)}}}
Factor
{{{((3x+1)(3x-1))/(12x(x-1))}}} * {{{(3(x^2-2x+1))/(3(3x^2+4x+1))}}}
Further factor
{{{((3x+1)(3x-1))/(12x(x-1))}}} * {{{(3(x-1)(x-1))/(3(3x+1)(x+1))}}}
cancel out 3x+1, x-1, 3
{{{((3x-1))/(12x)}}} * {{{((x-1))/((x+1))}}} = {{{(3x^2-4x+1)/(12x^2+12x)}}}