Question 451173
{{{ p(x)  = r(x) - c(x) }}}
{{{ p(x) = 5x - (.001x^2 + 1.2x + 60 ) }}}
{{{ p(x) = 5x - .001x^2 - 1.2x - 60 }}}
{{{ p(x) = -.001x^2 + 3.8x - 60 }}}
I need to find the max {{{x}}} of the function {{{ p(x) }}}
This occurs at {{{ x = -b/(2a) }}} when the equation
has the form {{{ f(x) = ax^2 + bx + c }}}
{{{ -b/(2a) = -3.8/(-.002) }}}
{{{ -b/(2a) = 1900 }}}
When 1900 units are sold, the profit is a maximum
here's the graph:
{{{ graph( 600, 600, -300, 4000, -300, 4000, -.001x^2 + 3.8x - 60) }}}