Question 46228
Assuming the 4 is just the number 4 and not the fourth root of (y^3/20x^5), we then get:


{{{ log(4sqrt(y^3/20x^5)) }}}
{{{ log(4(y^3/20x^5)^(1/2)) }}}
{{{ log(4((y^3)^(1/2)/(20x^5)^(1/2)) ) }}}
{{{ log( 4((y)^(3/2)/(20^(1/2)x^(5/2) ))) }}}
{{{ log( 4((y)^(3/2) )) - log(20^(1/2)x^(5/2) ) }}}
{{{ log4 + log(y)^(3/2) - ( log(20)^(1/2) + log(x)^(5/2) ) }}}
{{{ log4 + (3/2)log(y) - ( (1/2)log(20) + (5/2)log(x) ) }}}
{{{ log4 + (3/2)log(y) - (1/2)log(20) - (5/2)log(x) }}}


jon