Question 444242
{{{2x-4y>6}}}
{{{3x+2y<6}}}.......first solve for {{{y}}}


{{{2x-6>4y}}}

{{{2x/4-6/4>4y/4}}}

{{{y<(1/2)x-3/2}}}


{{{2y<6-3x}}}

{{{2y/2<6/2-3x/2}}}

{{{y<3-(3/2)x}}}

{{{y<-(3/2)x+3}}}

now graph them:


{{{y<(1/2)x-3/2}}}


{{{ graph( 500, 500, -10, 10, -10, 10,y<(1/2)x-3/2) }}} 

{{{y<-(3/2)x+3}}}

{{{ graph( 500, 500, -10, 10, -10, 10, y<-(3/2)x+3) }}} 

and both together:

{{{ graph( 500, 500, -10, 10, -10, 10,y<(1/2)x-3/2, y<-(3/2)x+3) }}} 

so, the points of intersection  are where

A point of the intersection: ({{{0}}},{{{0}}})
A point{{{not}}} in the intersection: ({{{0}}},{{{6}}})