Question 437165
The constant term: -(-2)(3i)(-3i) = 18
The coefficient of x:  (-2)(3i) + (-2)(-3i) + (3i)(-3i) = 9
The coefficient of {{{x^2}}}: -(-2 + 3i - 3i) = 2.
The coefficient of {{{x^3}}}: 1

Hence the polynomial is {{{f(x) = c(x^3 + 3x^2 + 9x + 18)}}}
Now {{{20 = c((-1)^3 + 3*(-1)^2 +  9(-1) + 18) = 10c}}}
==> c = 2.
The polynomial is  {{{f(x) = 2(x^3 + 3x^2 + 9x + 18)}}}.