Question 423063


Looking at the expression {{{7x^2-4x-11}}}, we can see that the first coefficient is {{{7}}}, the second coefficient is {{{-4}}}, and the last term is {{{-11}}}.



Now multiply the first coefficient {{{7}}} by the last term {{{-11}}} to get {{{(7)(-11)=-77}}}.



Now the question is: what two whole numbers multiply to {{{-77}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-4}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-77}}} (the previous product).



Factors of {{{-77}}}:

1,7,11,77

-1,-7,-11,-77



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-77}}}.

1*(-77) = -77
7*(-11) = -77
(-1)*(77) = -77
(-7)*(11) = -77


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-4}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-77</font></td><td  align="center"><font color=black>1+(-77)=-76</font></td></tr><tr><td  align="center"><font color=red>7</font></td><td  align="center"><font color=red>-11</font></td><td  align="center"><font color=red>7+(-11)=-4</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>77</font></td><td  align="center"><font color=black>-1+77=76</font></td></tr><tr><td  align="center"><font color=black>-7</font></td><td  align="center"><font color=black>11</font></td><td  align="center"><font color=black>-7+11=4</font></td></tr></table>



From the table, we can see that the two numbers {{{7}}} and {{{-11}}} add to {{{-4}}} (the middle coefficient).



So the two numbers {{{7}}} and {{{-11}}} both multiply to {{{-77}}} <font size=4><b>and</b></font> add to {{{-4}}}



Now replace the middle term {{{-4x}}} with {{{7x-11x}}}. Remember, {{{7}}} and {{{-11}}} add to {{{-4}}}. So this shows us that {{{7x-11x=-4x}}}.



{{{7x^2+highlight(7x-11x)-11}}} Replace the second term {{{-4x}}} with {{{7x-11x}}}.



{{{(7x^2+7x)+(-11x-11)}}} Group the terms into two pairs.



{{{7x(x+1)+(-11x-11)}}} Factor out the GCF {{{7x}}} from the first group.



{{{7x(x+1)-11(x+1)}}} Factor out {{{11}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(7x-11)(x+1)}}} Combine like terms. Or factor out the common term {{{x+1}}}



===============================================================



Answer:



So {{{7x^2-4x-11}}} factors to {{{(7x-11)(x+1)}}}.



In other words, {{{7x^2-4x-11=(7x-11)(x+1)}}}.



Note: you can check the answer by expanding {{{(7x-11)(x+1)}}} to get {{{7x^2-4x-11}}} or by graphing the original expression and the answer (the two graphs should be identical).



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Thank you


Jim