Question 419091
(f+g)(x)=f(x)+g(x)=
{{{x+4+x^(-x)}}}=
{{{(x+4)/1+1/(x^x)}}}=
{{{((x^x)(x+4))/x^x+1/(x^x)}}}=
{{{((x^(x+1)+4(x^x))/x^x+1/(x^x))}}}=
{{{((x^(x+1)+4(x^x)+1)/(x^x))}}}

(f+g)(2)={{{((2^(2+1)+4(2^2)+1))/(2^2)}}}=
{{{(8+16+1)/2}}}=
{{{25/2}}}
(ii)
(f+g)(x)={{{(x^-16+4-x)}}}=
{{{1/(x^16)-x+4=1/(x^16)-(x^17)/(x^16)+4x^16/(x^16)=(1-x^17+4x^16)/(x^16)}}}