Question 416442
{{{5*log(13,(root(3,169)))}}}



{{{5*log(13,((169)^(1/3)^""))}}}



{{{5(1/3)*log(13,(169))}}}



{{{(5/3)*log(13,(169))}}}



{{{(5/3)*log(13,(13^2))}}}



{{{(5/3)(2)*log(13,(13))}}}



{{{(10/3)*log(13,(13))}}}



{{{(10/3)*(1)}}}



{{{10/3}}}



So {{{5*log(13,(root(3,169)))=10/3}}}



Notes: 


1) {{{log(b,(b))=1}}} where {{{b>0}}}, {{{b<>1}}} or {{{b<>0}}}. So this means that {{{log(13,(13))=1}}}


2) I'm also using the formula {{{log(b,(x^y))=y*log(b,(x))}}}. In other words, we can pull down the exponent and place it out front as a coefficient.



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com">jim_thompson5910@hotmail.com</a>


Also, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Thank you


Jim