Question 414409


First let's find the slope of the line through the points *[Tex \LARGE \left(-5,-4\right)] and *[Tex \LARGE \left(-2,-6\right)]



Note: *[Tex \LARGE \left(x_{1}, y_{1}\right)] is the first point *[Tex \LARGE \left(-5,-4\right)]. So this means that {{{x[1]=-5}}} and {{{y[1]=-4}}}.

Also, *[Tex \LARGE \left(x_{2}, y_{2}\right)] is the second point *[Tex \LARGE \left(-2,-6\right)].  So this means that {{{x[2]=-2}}} and {{{y[2]=-6}}}.



{{{m=(y[2]-y[1])/(x[2]-x[1])}}} Start with the slope formula.



{{{m=(-6--4)/(-2--5)}}} Plug in {{{y[2]=-6}}}, {{{y[1]=-4}}}, {{{x[2]=-2}}}, and {{{x[1]=-5}}}



{{{m=(-2)/(-2--5)}}} Subtract {{{-4}}} from {{{-6}}} to get {{{-2}}}



{{{m=(-2)/(3)}}} Subtract {{{-5}}} from {{{-2}}} to get {{{3}}}



So the slope of the line that goes through the points *[Tex \LARGE \left(-5,-4\right)] and *[Tex \LARGE \left(-2,-6\right)] is {{{m=-2/3}}}



Now let's use the point slope formula:



{{{y-y[1]=m(x-x[1])}}} Start with the point slope formula



{{{y--4=(-2/3)(x--5)}}} Plug in {{{m=-2/3}}}, {{{x[1]=-5}}}, and {{{y[1]=-4}}}



{{{y--4=(-2/3)(x+5)}}} Rewrite {{{x--5}}} as {{{x+5}}}



{{{y+4=(-2/3)(x+5)}}} Rewrite {{{y--4}}} as {{{y+4}}}



{{{y+4=(-2/3)x+(-2/3)(5)}}} Distribute



{{{y+4=(-2/3)x-10/3}}} Multiply



{{{y=(-2/3)x-10/3-4}}} Subtract 4 from both sides. 



{{{y=(-2/3)x-22/3}}} Combine like terms. note: If you need help with fractions, check out this <a href="http://www.algebra.com/algebra/homework/NumericFractions/fractions-solver.solver">solver</a>.



So the equation that goes through the points *[Tex \LARGE \left(-5,-4\right)] and *[Tex \LARGE \left(-2,-6\right)] is {{{y=(-2/3)x-22/3}}}



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com">jim_thompson5910@hotmail.com</a>


Also, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Thank you


Jim