Question 414052
{{{((x^2-16)/(x^2+5x+6))/((x^2+5x+4)/(x^2-2x-8))}}}...replace {{{16}}} with {{{4^2}}}, then {{{5x}}} with {{{2x+3x}}, then {{{5x}}} with {{{x+4x}}, then 
{{{-2x}}} with {{{2x-4x}} 



{{{(x^2-4^2)/(x^2+2x+3x+6))/((x^2+x+4x+4)/(x^2+2x-4x-8)}}}


{{{(((x-4)(x+4))/(x((x+2)+3(x+2))))/((x(x+1)+4(x+1))/(x(x+2)-4(x+2)))}}}


{{{((((x-4)(x+4))/((x+3)(x+2))))/((x+4)(x+1)/(x-4)(x+2))))}}}


{{{((((x-4)cross((x+4)))/((x+3)cross((x+2)))))/(cross((x+4))(x+1)/(x-4)cross((x+2)))))}}}



{{{((x-4)(x-4))/((x+3)(x+1))))}}}


since denominator cannot be equal to zero, restrictions on the variables exist and if


{{{(x+3)=0}}}........{{{x=-3}}}  and

{{{(x+1)=0}}}........{{{x=-1}}}...there will be no solution

so, variable {{{x}}} cannot be equal neither {{{-3}}} nor {{{-1}}}