Question 410585
  <pre><font size = 3 color = "indigo"><b>
Hi
Find the vertex, the line of symmetry, the maximum or minimum value of the quadratic function
f(x)=2x^2-12x+20
Using the vertex form of a parabola, {{{y=a(x-h)^2 +k}}} where(h,k) is the vertex
f(x)=2(x^2-6x)+20   |completing square to put into vertex form
f(x)=2[(x-3)^2 - 9] +20
f(x) = 2(x-3)^2 -18 + 20
f(x) = 2(x-3)^2 + 2   |Vertex is Pt(3,2)  Line of symmetry is x= 3
{{{drawing(300,300,   -6, 6, -6, 6, blue(line(3,6,3,-6))  , grid(1),
circle(3, 2,0.3),
graph( 300, 300, -6, 6, -6, 6,0,2x^2-12x+20))}}}