Question 404895
 {{{log(3,x)=y}}}
{{{log(9,(2x-1))=y}}}
.
{{{log(9,(2x-1))=log(3,x)}}}
{{{log(9,(2x-1))=log((9^(1/2)),x)}}}
Use formula {{{log((b^n), a)=(1/n)log(b,a)}}}
{{{log(9,(2x-1))=(1/(1/2))log(9,x)}}}
{{{log(9,(2x-1))=2log(9,x)}}}
Use formula {{{n*log(b,a)=log(b,(a^n))}}}
{{{log(9,(2x-1))=log(9,(x^2))}}}
{{{2x-1=x^2}}}
{{{x^2-2x+1=0}}}
 {{{x = (-b +- sqrt( b^2-4*a*c ))/(2*a) }}} 
 {{{x = (-(-2) +- sqrt((-2)^2-4*1*1 ))/(2*1) }}} 
 {{{x = (2 +- 0)/2 }}} 
{{{x=1}}}
Check {{{log(9,(2*1-1))=log(3,1)}}}
{{{0=0}}} correct
put {{{x=1}}} at the first equation  {{{y=log(3,1)=0}}}
Answer x=1, y=0