Question 398464


Looking at the expression {{{n^2-11n+10}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{-11}}}, and the last term is {{{10}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{10}}} to get {{{(1)(10)=10}}}.



Now the question is: what two whole numbers multiply to {{{10}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-11}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{10}}} (the previous product).



Factors of {{{10}}}:

1,2,5,10

-1,-2,-5,-10



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{10}}}.

1*10 = 10
2*5 = 10
(-1)*(-10) = 10
(-2)*(-5) = 10


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-11}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>10</font></td><td  align="center"><font color=black>1+10=11</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>2+5=7</font></td></tr><tr><td  align="center"><font color=red>-1</font></td><td  align="center"><font color=red>-10</font></td><td  align="center"><font color=red>-1+(-10)=-11</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-2+(-5)=-7</font></td></tr></table>



From the table, we can see that the two numbers {{{-1}}} and {{{-10}}} add to {{{-11}}} (the middle coefficient).



So the two numbers {{{-1}}} and {{{-10}}} both multiply to {{{10}}} <font size=4><b>and</b></font> add to {{{-11}}}



Now replace the middle term {{{-11n}}} with {{{-n-10n}}}. Remember, {{{-1}}} and {{{-10}}} add to {{{-11}}}. So this shows us that {{{-n-10n=-11n}}}.



{{{n^2+highlight(-n-10n)+10}}} Replace the second term {{{-11n}}} with {{{-n-10n}}}.



{{{(n^2-n)+(-10n+10)}}} Group the terms into two pairs.



{{{n(n-1)+(-10n+10)}}} Factor out the GCF {{{n}}} from the first group.



{{{n(n-1)-10(n-1)}}} Factor out {{{10}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(n-10)(n-1)}}} Combine like terms. Or factor out the common term {{{n-1}}}



===============================================================



Answer:



So {{{n^2-11n+10}}} factors to {{{(n-10)(n-1)}}}.



In other words, {{{n^2-11n+10=(n-10)(n-1)}}}.



Note: you can check the answer by expanding {{{(n-10)(n-1)}}} to get {{{n^2-11n+10}}} or by graphing the original expression and the answer (the two graphs should be identical).



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my <a href="http://www.freewebs.com/jimthompson5910/home.html">tutoring website</a>


Jim