Question 398254
{{{1/(x^2+3x+2) = 1/(x-1) + 2/(x^2 -1)}}}


{{{1/(x^2+3x+2) = 1/(x-1) + 2/(x -1)(x+1)}}}


{{{1/(x^2+3x+2) = (1(x+1)+ 2)/(x -1)(x+1)}}}


{{{1/((x^2+2x) +(x +2)) = (x+ 3)/(x -1)(x+1)}}}


{{{1/(x(x+2) +(x +2)) = (x+ 3)/(x -1)(x+1)}}}


{{{1/((x+2)(x +1)) = (x+ 3)/(x -1)(x+1)}}}


{{{(x -1)(x+1) = (x+ 3)(x+2)(x +1)}}}


{{{(x -1)cross((x+1)) = (x+ 3)(x+2)cross((x +1))}}}


{{{x -1 = (x+ 3)(x+2)}}}


{{{x -1 = x^2 +2x + 3x +6)}}}


{{{x -1 = x^2 +5x +6)}}}

{{{0 = x^2 +5x -x +6 +1)}}}

{{{x^2 + 4x +7 = 0)}}}


usu quadratic formula to solve for {{{x}}}


{{{x = (-b +- sqrt( b^2-4*a*c ))/(2*a) }}} ...{{{a=1}}}, {{{b=4}}} and {{{c=7}}}


{{{x = (-4 +- sqrt( 4^2-4*1*7 ))/(2*1) }}} 


{{{x = (-4 +- sqrt( 16-28 ))/2) }}}

{{{x = (-4 +- sqrt( -12 ))/2) }}}


{{{x = (-4 +- sqrt( -1*3*4 ))/2) }}}


{{{x = (-4 +- 2i(sqrt( 3 ))/2) }}}




{{{x1 = (-4 + 2i(sqrt( 3 ))/2) }}}


{{{x2 = (-4 - 2i(sqrt( 3 ))/2) }}}