Question 43039
<pre><font size = 5><b>Given that 0.475 < log base 10 of 3 < 0.478, how 
many digits are in the number 3<sup>50</sup>? 

We have to get 3<sup>50</sup> into the form 10<sup>x</sup>

We need to find x such that

3<sup>50</sup> = 10<sup>x</sup>

Take logs (base 10 understood) of both sides

log(3<sup>50</sup>) = log(10<sup>x</sup>)

Using rules of logarithms:

50·log(3) = x

Solve for log(3)

log(3) = x/50

We are given that

0.475 < log(3) < 0.478

So substitute x/50 for log(3)

0.475 < x/50 < 0.478

Multiply thru by 50

23.75 < x < 23.9

Raise 10 to all three powers:

10<sup>23.75</sup> < 10<sup>x</sup> < 10<sup>23.9</sup>

10<sup>23.75</sup> < 3<sup>50</sup> < 10<sup>23.9</sup>

Integers equal to or greater than 10<sup>0</sup> but less than 10<sup>1</sup>
have 1 digit.
Integers equal to or greater than 10<sup>1</sup> but less than 10<sup>2</sup>
have 2 digits.
Integers equal to or greater than 10<sup>2</sup> but less than 10<sup>3</sup>
have 3 digits.
Integers equal to or greater than 10<sup>3</sup> but less than 10<sup>4</sup>
have 4 digits.
...      ...      ...      ...      ...      ...      ...      ...
Integers equal to or greater than 10<sup>23</sup> but less than 10<sup>24</sup>
have 24 digits.

10<sup>23</sup> < 10<sup>23.75</sup> < 3<sup>50</sup> < 10<sup>23.9</sup> < 10<sup>24</sup>

Thus 3<sup>50</sup> has 24 digits.

Checking with the calculator: 3<sup>50</sup> = 7.176879877×10<sup>23</sup>


Edwin
AnlytcPhil@aol.com</pre>