Question 391971
I can say
{{{x = 1}}}
{{{x = i}}}
{{{x = -i}}}
----------
Now I can say
{{{x - 1 = 0}}}
{{{x - i = 0}}}
{{{x - (-i) = 0}}}
----------
Multiplying the left sides:
{{{(x - 1)*(x - i)*(x -(-i))}}}
{{{(x - 1)*(x^2 +1)}}}
{{{x^3  + x - x^2 - 1}}}
{{{x^3 - x^2 + x - 1 = 0}}}
If I substitute {{{x = 1}}}, the I get
{{{1 - 1 + 1 - 1 = 0}}} correct
and {{{x = i}}},
{{{-i + 1 + i - 1 = 0}}} correct
and {{{x = -i}}}
{{{i + 1 - i - 1 = 0}}} correct
The tricky part is {{{i^2 = (-i)^2}}}