Question 390001


Note: *[Tex \LARGE \left(x_{1}, y_{1}\right)] is the first point *[Tex \LARGE \left(4,-1\right)]. So this means that {{{x[1]=4}}} and {{{y[1]=-1}}}.

Also, *[Tex \LARGE \left(x_{2}, y_{2}\right)] is the second point *[Tex \LARGE \left(7,5\right)].  So this means that {{{x[2]=7}}} and {{{y[2]=5}}}.



{{{d=sqrt((x[1]-x[2])^2+(y[1]-y[2])^2)}}} Start with the distance formula.



{{{d=sqrt((4-7)^2+(-1-5)^2)}}} Plug in {{{x[1]=4}}},  {{{x[2]=7}}}, {{{y[1]=-1}}}, and {{{y[2]=5}}}.



{{{d=sqrt((-3)^2+(-1-5)^2)}}} Subtract {{{7}}} from {{{4}}} to get {{{-3}}}.



{{{d=sqrt((-3)^2+(-6)^2)}}} Subtract {{{5}}} from {{{-1}}} to get {{{-6}}}.



{{{d=sqrt(9+(-6)^2)}}} Square {{{-3}}} to get {{{9}}}.



{{{d=sqrt(9+36)}}} Square {{{-6}}} to get {{{36}}}.



{{{d=sqrt(45)}}} Add {{{9}}} to {{{36}}} to get {{{45}}}.



{{{d=3*sqrt(5)}}} Simplify the square root.



So our answer is {{{d=3*sqrt(5)}}} 



Which approximates to {{{d=6.708}}} 



So the distance between the two points is approximately 6.708 units. 



So the length of the line segment is approximately 6.708 units.



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my <a href="http://www.freewebs.com/jimthompson5910/home.html">tutoring website</a>


Jim