Question 388671


{{{(a-3b)(2a+2b)}}} Start with the given expression.



Now let's FOIL the expression.



Remember, when you FOIL an expression, you follow this procedure:



{{{(highlight(a)-3b)(highlight(2a)+2b)}}} Multiply the <font color="red">F</font>irst terms:{{{(a)*(2*a)=2*a^2}}}.



{{{(highlight(a)-3b)(2a+highlight(2b))}}} Multiply the <font color="red">O</font>uter terms:{{{(a)*(2*b)=2*a*b}}}.



{{{(a+highlight(-3b))(highlight(2a)+2b)}}} Multiply the <font color="red">I</font>nner terms:{{{(-3*b)*(2*a)=-6*a*b}}}.



{{{(a+highlight(-3b))(2a+highlight(2b))}}} Multiply the <font color="red">L</font>ast terms:{{{(-3*b)*(2*b)=-6*b^2}}}.



---------------------------------------------------

So we have the terms: {{{2*a^2}}}, {{{2*a*b}}}, {{{-6*a*b}}}, {{{-6*b^2}}} 



{{{2*a^2+2*a*b-6*a*b-6*b^2}}} Now add every term listed above to make a single expression.



{{{2*a^2-4*a*b-6*b^2}}} Now combine like terms.



So {{{(a-3b)(2a+2b)}}} FOILs to {{{2*a^2-4*a*b-6*b^2}}}.



In other words, {{{(a-3b)(2a+2b)=2*a^2-4*a*b-6*b^2}}}.



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my <a href="http://www.freewebs.com/jimthompson5910/home.html">tutoring website</a>


Jim