Question 387109


{{{4k^3-13k^2-12k}}} Start with the given expression.



{{{k(4k^2-13k-12)}}} Factor out the GCF {{{k}}}.



Now let's try to factor the inner expression {{{4k^2-13k-12}}}



---------------------------------------------------------------



Looking at the expression {{{4k^2-13k-12}}}, we can see that the first coefficient is {{{4}}}, the second coefficient is {{{-13}}}, and the last term is {{{-12}}}.



Now multiply the first coefficient {{{4}}} by the last term {{{-12}}} to get {{{(4)(-12)=-48}}}.



Now the question is: what two whole numbers multiply to {{{-48}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{-13}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{-48}}} (the previous product).



Factors of {{{-48}}}:

1,2,3,4,6,8,12,16,24,48

-1,-2,-3,-4,-6,-8,-12,-16,-24,-48



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{-48}}}.

1*(-48) = -48
2*(-24) = -48
3*(-16) = -48
4*(-12) = -48
6*(-8) = -48
(-1)*(48) = -48
(-2)*(24) = -48
(-3)*(16) = -48
(-4)*(12) = -48
(-6)*(8) = -48


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{-13}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>-48</font></td><td  align="center"><font color=black>1+(-48)=-47</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>-24</font></td><td  align="center"><font color=black>2+(-24)=-22</font></td></tr><tr><td  align="center"><font color=red>3</font></td><td  align="center"><font color=red>-16</font></td><td  align="center"><font color=red>3+(-16)=-13</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>4+(-12)=-8</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>-8</font></td><td  align="center"><font color=black>6+(-8)=-2</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>48</font></td><td  align="center"><font color=black>-1+48=47</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>24</font></td><td  align="center"><font color=black>-2+24=22</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>16</font></td><td  align="center"><font color=black>-3+16=13</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>-4+12=8</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>8</font></td><td  align="center"><font color=black>-6+8=2</font></td></tr></table>



From the table, we can see that the two numbers {{{3}}} and {{{-16}}} add to {{{-13}}} (the middle coefficient).



So the two numbers {{{3}}} and {{{-16}}} both multiply to {{{-48}}} <font size=4><b>and</b></font> add to {{{-13}}}



Now replace the middle term {{{-13k}}} with {{{3k-16k}}}. Remember, {{{3}}} and {{{-16}}} add to {{{-13}}}. So this shows us that {{{3k-16k=-13k}}}.



{{{4k^2+highlight(3k-16k)-12}}} Replace the second term {{{-13k}}} with {{{3k-16k}}}.



{{{(4k^2+3k)+(-16k-12)}}} Group the terms into two pairs.



{{{k(4k+3)+(-16k-12)}}} Factor out the GCF {{{k}}} from the first group.



{{{k(4k+3)-4(4k+3)}}} Factor out {{{4}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(k-4)(4k+3)}}} Combine like terms. Or factor out the common term {{{4k+3}}}



--------------------------------------------------



So {{{k(4k^2-13k-12)}}} then factors further to {{{k(k-4)(4k+3)}}}



===============================================================



Answer:



So {{{4k^3-13k^2-12k}}} completely factors to {{{k(k-4)(4k+3)}}}.



In other words, {{{4k^3-13k^2-12k=k(k-4)(4k+3)}}}.



Note: you can check the answer by expanding {{{k(k-4)(4k+3)}}} to get {{{4k^3-13k^2-12k}}} or by graphing the original expression and the answer (the two graphs should be identical).



If you need more help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=Algebra%20Help">jim_thompson5910@hotmail.com</a>


Also, feel free to check out my <a href="http://www.freewebs.com/jimthompson5910/home.html">tutoring website</a>


Jim