Question 383573
Find the product of (x^2 -3x + 5) with the quotient of (10x^6 -15x^5 -5x^3) divided by 5x^3.
----------------
Do the division first.
{{{(10x^6 - 15x^5 - 5x^3)/5x^3 = 2x^3 - 3x^2 - 1}}}
Any questions about that?
Then multiply
{{{(x^2 - 3x + 5)*(2x^3 - 3x^2 - 1)}}}
Multiply the 2nd trinomial be each element of the 1st
= {{{x^2*(2x^3 - 3x^2 - 1) - 3x*(2x^3 - 3x^2 - 1) - 1*(2x^3 - 3x^2 - 1)}}}
= {{{2x^5 - 3x^4 - x^2 - 6x^4 + 9x^3 + 3x - 2x^3 + 3x^2 + 1}}}
= {{{2x^5 - 9x^4 + 7x^3 + 2x^2 + 3x + 1}}}
-------------
It's like bookkeeping, you just have to be careful.